NIAB - National Institute of Agricultural Botany

Orson's Oracle

Where are the dead fish?

Posted on 21/04/2017 by Jim Orson

I recently attended a workshop on aquatic buffer zones. Some contributions indicated that they may not yet be sufficiently wide. There are two possible reasons for this. Firstly, it was suggested that spray drift could be far higher than that indicated by the models currently used in EU registration systems. Secondly, there were suggestions that higher levels of protection of aquatic ecosystems from pesticides may be necessary. I must admit that I was shaken by these statements because we already have aquatic buffer zones of up to 18 metres wide. The widest buffer zones are usually for insecticides but, rather ominously, one black-grass herbicide product (so far) also has an 18 metre buffer zone.

The obvious question was posed. Is there evidence that there is a problem from spray drift? More succinctly, where are the dead fish? Fish welfare is only one aspect of the health of aquatic ecosystems but the point is well made.

The Environment Agency publishes annually its analysis of the environmental health of the main water bodies in England. In 2015 only one of the 4,678 main water bodies in England contained a pesticide in current agricultural use at a level that was above the Environmental Quality Standard set by the Agency and others. The other nine water bodies failing to meet the Environmental Quality Standards for pesticides had active substances that have been withdrawn from agricultural or industrial use. Hence, on a grand scale there does not appear to be much of a problem from current agricultural use.

There are of course countless smaller water bodies and streams where environmental health is not regularly monitored and we do not know the extent of the impact of pesticide drift on their ecosystems. However, it has to be noted that the ecosystems, particularly of some smaller watercourses, are affected by other factors. Some ditches, particularly close to major roads, appear lifeless because of factors other than pesticides. Soil contamination and other pollutants have a major impact on many of our small watercourses.

Jim Orson NIAB TAG blog watercourse  Where do we go from here and how do we reduce unnecessary restrictions on agricultural productivity due to ever increasing aquatic buffer zones? Personally, I think that we need to start with the definition of a watercourse. The definition used by many authorities, including our Chemicals Regulation Division (CRD) of HSE, goes something along the lines of ‘a natural or artificial channel through which water flows’. Does this mean that we should really be trying to maintain the health of water ecosystems in ditches which are dry for most of the year? I am not so sure because as such ditches dry they contain a series of stagnant puddles which are not conducive to some of the aquatic organisms that the pesticide regulations are designed to protect.

It is interesting to note that the guidance document on protecting water ecosystems for the pesticide registration authorities of the EU member states uses a different definition of a watercourse. On page 40 it says that the guidance document ‘predominantly addresses the risk for organisms occurring in permanent edge-of field water bodies, that is, water bodies that contain water throughout the year’. That is, in my opinion, a more realistic definition of what should be protected.

In France only watercourses that are marked blue on a 1:25,000 scale map need to be protected by an aquatic buffer strip in order to avoid spray drift affecting aquatic ecosystems. I have found an UK government data site that has watercourses marked blue on a 1:10,000 scale. Using my experience of some farms, this site could be used to prioritise which farm ditches are worth protecting with aquatic buffer zones. Prioritising could offer the means of improving the protection of recognised watercourses on this map, not only from spray drift but also from other pollutants.

I offer this as a way forward but also would like to say that the ditches not appearing on this map may need some minimal level of protection, even when dry. This is particularly true of ditches at the bottom of slopes in drinking water catchments in order to reduce the risk of pesticides entering raw drinking water through run-off. However, as a general statement, not to spray within 18 metres of a puddly ditch is perhaps not the ideal way to address an overall improvement in water health.

It has long been argued that people are more likely to adopt improved practices if they can be provided with a hopeful vision. The vision on aquatic buffer zones as it stands is not that hopeful but prioritising watercourses may convince farmers that there is a practical and realistic way forward. It could be that prioritising the protection of recognised watercourses is also something that the UK government can still afford to support after Brexit by generously funding realistic sized permanent and floristic buffer zones which are easy to police. I mention the need for floristic buffer zones in order to support biodiversity too. Surrounding recognised water courses with such vegetation will provide the connectivity for biodiversity that many argue is necessary.

Of course, reducing spray drift will also help to lessen the area devoted to buffer strips. The concern is that methods of reducing drift beyond the 75% achieved by the small droplet flat-fan air induction nozzles may well mean poorer efficacy of many pesticide products. This issue will be the subject of another blog in the near future.

Leave a comment / View comments

Fake News, Fake Science and GM

Posted on 31/03/2017 by Jim Orson

I tend to be in despair over the quality of debate on new agricultural technology. This is because of the standards adopted by those who oppose such developments. In some ways it is comforting as it demonstrates that they cannot find facts that agree with their motives; all we get is fake news and fake science.

Take GMs. These are back in the news, partly because of the realism of the Princess Royal. She is a star in our family because of the immense amount of often unpublicised time she spends supporting the Save the Children Fund. My wife devotes much of her time to the charity and is very aware of the level of support it gets from Princess Anne.

Princess Anne’s comments on GM are in stark contrast to those of her brother, Prince Charles, who describes GM as “a gigantic experiment with nature” that will end with an ecological disaster. This statement does not give enough credit to nature where some of the processes used in GM occur naturally. For instance the sweet potato contains genes introduced, not by natural crossing, but by an agrobacterium. This fact does not seem to affect sweet potato sales at our local Waitrose.

The responses to Princess Anne’s comments were all too predictable, including the tired comment that GM creates ‘super weeds’ because some weed species have developed resistance to glyphosate. The green blob makes the fatuous and totally untrue assertion that this weed resistance has spread somehow from the GM herbicide tolerant crop. Ask any black-grass grower in England and they will be able to tell the green groups that you do not need GM crops to create ‘super weeds’.

However, there is some heartening news that attitudes to the negative stories on agricultural technology promulgated by the green blob are slowly changing. Some of the scare stories based on studies that they have funded and that are of contestable scientific quality are either not being mentioned by news organisations or are getting short shrift from them.

I was particularly heartened by a headline in The Times on 11th March which read “organic food is risk to the planet”. This was a comment on a Canadian review of the productivity and the environmental impact of organic and conventional farming. On a per tonne of output basis, there was no difference in environmental impact. The authors of the scientific paper did not say that organic food is a risk to the planet. 

That was the interpretation by the science editor of the paper. His argument is that because there is no difference in environmental impact per tonne of production, significantly less land is required to produce food conventionally. This will not only help in sparing the current wild lands but will also allow some of the currently cultivated land to be devoted specifically to biodiversity.

NIAB biodiversityIt could be argued that this conclusion may be questionable in the UK because our commodity food production is more reliant than most on inputs. However, it was comforting to read a paper in the Journal of Applied Ecology that also concludes that on a per tonne of output basis the environmental impact of conventional and organic winter cereals production in England is very similar. However, the fields surveyed in the study were in winter cereals only and so the biodiversity friendly grass/legume fertility building breaks in organic rotations were not taken into account. Hence, there is a need for conventional farmers to devote some land and management time to support biodiversity.

There are continuing and immense problems getting GM crops registered in the EU. As the recent leader of The Scotsman puts it “It seems that unscientific stance [on GMs] is a luxury the Scottish Government thinks we can afford at the moment, but it has to be wondered what that decision says about us as a nation.” What it is really saying is that while the current European political structures deride populism, their very own anti-GM stance is a prime example of anti-science populism.

Finally, I recently had a ‘did he say that’ moment. Did Tony Juniper, the well known green campaigner, really say on Radio 4 that he did not have a problem with GM resistant potatoes where the resistance genes were derived from wild relatives? (Listen here and fast forward to approximately 1 hour 50 minutes). I am pretty sure that he did. Now that is a step towards scientific enlightenment. Can we now remove the enormous fences and the security guards that protect the current GM trials in this country? I suspect that we all know the answer to that!

Leave a comment / View comments

The promoted narrative

Posted on 17/03/2017 by Jim Orson

A farmer recently mentioned the term ‘the promoted narrative’ over a stimulating lunch. I rather like that because arable agriculture is full of promoted narratives.

A dictionary definition of a narrative is ‘a spoken or written account of connected events; a story’. I think the word ‘story’ summarises some of the statements that I have heard or read in recent weeks.

For instance there is the commonly made statement that an early spring application of chlormequat or another plant growth regulator will stimulate tillering in late sown winter wheat. This is a story. True enough, chlormequat will increase the number of fertile tillers or heads of wheat at harvest. However, it does this by decreasing the tiller loss that occurs from about the first to second node stage rather than by increasing the number of tillers before those growth stages. Hence, application just before the first node stage is perfect for reducing tiller loss. It cannot possibly increase the number of potential tillers when applied in the early spring because only one tiller can emerge from a leaf axil and production of new leaves is a function of thermal time (day degrees) and this process is not modified by plant regulator application.

In terms of yield, the application of chlormequat just before the first node stage of winter wheat can be a good thing in years with a dry spring and a good grain fill. 2011 is a case in point. The wheat crops, untreated by chlormequat, shed too many tillers in May because of the drought. However, the rain in early June and good levels of solar radiation during grain fill meant that there was sufficient photosynthetic activity to feed the extra heads and/or grain sites in the chlormequat treated crops. In the absence of lodging, crop responses of up to 1t/ha were recorded in trials. Sadly the opposite was true in the following year. The dire wet and dull summer of 2012 meant that there was a low natural loss of tillers in May and there was insufficient photosynthesis to fill the grain sites of the untreated crops. Therefore the additional heads and/or grain sites that occurred as a result of chlormequat application were an additional burden. In the absence of lodging, losses from chlormequat application in that year approached the gains measured in 2011.

The early spring application of chlormequat and other plant growth regulators is also said to increase the rooting of late sown wheats. It may do, but independent trials have shown that any yield increase in late sown wheat from this timing is less than that from an application just before the first node stage. Come to think of it, has anyone found that late sown wheats are short of roots in the early spring? Wheat root production increases at an exponential rate during stem extension and so logically, an application of chlormequat just before this stage would be more appropriate. However, I think that any impact on roots from growth regulators is by the bye. I realise that this is a battleground between competing plant growth regulator products but it has never been identified in the field that plant growth regulators can increase nutrient and water capture from the soil.

Another promoted narrative regarding the spring management of late sown wheats is that they need more early nitrogen. They certainly need early nitrogen but they do not need more than a typical conventional crop. This is because the plants are small and while the root system is adequate it is not as developed as a typical conventional crop at this time and so, if anything, applying less nitrogen than for conventional crops is a wiser option.

I could go on about other promoted narratives. Okay…. one more; micronutrients. The story and the products keep changing. I wonder why. A few years ago the promoted narrative was that a single application of a mixture of micronutrients was necessary for all wheat crops, even those not showing symptoms. That was eventually blown out of the water by the superb AHDB project report on micronutrients for wheat. So the selling angle has now changed to a series of applications being required and/or that high yielding crops will only be achieved with their help. Do not fall for it. High yields are a result of healthy soils, good weather and good management. The latter includes using micronutrients only to treat visual deficiency symptoms or persistently occurring deficiencies that will cause symptoms later in the crop’s life. I was surprised by one aspect of the AHDB project: wheat showing a micronutrient deficiency symptom always responded visually to the relevant applied spray but yields were not always increased. This means that the approach I suggest is precautionary.

There are plenty of other promoted narratives; a common one is that organic agriculture is good for the environment. Yet another report has recently been published, this time from Canada, which concludes that this is not true when organic and conventional production is compared on a per tonne basis. Promoted narratives particularly abound for difficult to understand issues such as trying to define the dose of nitrogen required by a specific crop or the impact of weather conditions on yields. Simple values hide the huge variations that occur in real life. I could go on …… but I’ll leave it there!

Leave a comment / View comments

The end of a fairytale

Posted on 03/03/2017 by Jim Orson

I was just starting to write this blog when news came through that Claudio Ranieri had been sacked. Last year, against all odds (well, 5,000 to1), he led Leicester City to the Premier League title. His sacking is indeed the end of a fairytale.

Talking of fairytales, our national press have recently published articles on why UK farming will prosper without subsidies. They all quote the successful adaptation of NZ agriculture to a life without subsidies over the last 30 years. There are some elements of these articles with which I agree but others have a fairytale aspect about them.

There were bankruptcies in NZ when subsidies were first removed in the mid-1980s. Farmers who lost their businesses fell into two camps; those who lived the lifestyle but did not run a business and those really good farmers, especially younger farmers, who had invested heavily. Interest rates soared into the twenties at around the same time as subsidies were removed and there was no way out.

When I first visited NZ around 20 years ago, I was struck by the low level of capital investment in the less productive areas of the business, particularly in and around the farmstead i.e. no posh farmyards, farm tracks, grain storage and barns. However, there was investment going on in productive areas of the business, particularly irrigation. Farmers’ cars tended to be second-hand from Japan (who also drive on the left). Most farmers’ wives were in full time employment and/or heavily involved in the business. This was a vestige from the time when subsidies were first removed and a second income was often essential to keep the business ticking over.

NZ has some climate and market advantages. The main arable area is the Canterbury Plains located to the west and south of Christchurch in the South Island. Here average monthly temperatures are higher than those in East Anglia except for the mid and late summer months. In addition, solar radiation is higher in NZ. This means that crop growth is potentially higher on the Canterbury Plains than in East Anglia, particularly in their autumn, winter and spring. The longer growing season in much of NZ particularly benefits grass production and we all know how they have exploited this to their advantage.

Jim Orson blog - niab.com

Average rainfall during the summer months on the Canterbury Plains is a little lower than here in Cambridge. Hence, things can get a bit dry in their summers, significantly limiting their higher potential yields. Many in NZ have overcome this by installing irrigation over the last thirty years or so, not only for arable production but also for grass. Initially there was little restriction in getting a licence for irrigation but things have tightened up significantly over the last 15 years and access to water is getting progressively more problematic. I would like to suggest that the extensive use of irrigation, with cheaper water, has been the major contributor to the increase in NZ productivity that our national press quote and laud. Unfortunately, such an extensive use of irrigation with relatively cheap water is not available to the UK grower.

Jim Orson blog - niab.com

On the Canterbury Plains it is not unusual for wheat to receive 100mm-125mm of irrigation a year. The average response is approaching 4 t/ha. The irrigation of wheat is not only a reflection of the cost of water but also the higher potential yields on the Canterbury Plains and that their wheat prices are higher. This is because NZ does not export cereals and so the price of any competing imported wheat has to include the transport costs to what is an isolated part of the world. This provides an advantage to the NZ grower of at least £10/t over world prices. The wheat price is currently around £170/t in NZ.

It is worth pointing out that wheat is often a break crop on the Canterbury Plains. Over the last 30 years NZ has done a great job in building up its herbage and clover seed production. In addition, irrigation has been a significant factor in enabling the establishment of a very significant area devoted to the production of small seeds for export, such as those for horticultural and forage crops. This diversity in cropping has enabled NZ farmers to continue to employ sensible rotations. Over the same period the herbage seed area in the UK has declined significantly and we are only now rediscovering the benefits of rotations.

An issue widely mentioned in our national press is that, without subsidies, our arable input costs, such as seeds, fertilisers and sprays, will go down. This may be a fairytale because, overall, these input costs are equivalent to those in NZ and have been throughout the time I have been visiting that country. Surprisingly, if anything, seed prices tend to be higher in NZ. Some NZ farmers say that their farm machinery costs more than ours but others disagree. This apparent contradiction may be partly due to the swings in exchange rates. Land costs appear to be approximately the same but there are few short term tenancy agreements in NZ.

Another fairytale element of the articles in our national press is the comment that UK farmers have not been keen to adopt new technology over the last thirty years because they have somehow been featherbedded. This, in my opinion, is a contemptuous slur. For instance, the rapid increase in the yields of NZ wheat over the last twenty years has been due to them adopting approaches that were established in the UK in the 1980s.

It is clear that NZ agriculture has not only survived the loss of subsidies but has emerged as a dynamic industry. Their arable industry has done this by exploiting their natural advantages, developing overseas markets and, sometimes, learning from others. I believe that our own industry is equally dynamic and hope that identifying and exploiting its natural advantages and expanding its market opportunities is sufficient for it to thrive in the future. A much more informative document on the impact of the removal of subsidies on NZ agriculture can be obtained by typing ‘farm subsidy reform dividends by Ralph Lattimore’ into your browser.

Leave a comment / View comments

The return of nature

Posted on 20/02/2017 by Jim Orson

I have nicked the title of this blog from Jesse Ausubel of the Rockefeller University in the US. He has long held the view that technology liberates the environment. His papers include some on agriculture and forestry but there are also many papers on other industries, all with this same overriding conclusion.

The basis of his argument is the generally accepted thesis that agriculture has been the greatest destroyer of nature. It is quite clear to me that the initial decision to cultivate a natural habitat has by far the greatest impact on nature. How that land is then farmed is of secondary importance. Hence, in terms of supporting nature, the inevitable conclusion is to cultivate the minimum area necessary to feed the world. This is where technology can come in, lifting yields whilst also maintaining or improving human health and the environment.

Ausubel in a recent review quotes a paper by two geographers who conclude that technology has increased yields in reasonably responsive situations which has resulted in the abandonment of marginal agricultural lands. In the former Soviet Union and Eastern Europe this process has released at least 30 million hectares and possibly as much as 60 million hectares back to nature.

Another interesting reference in the same review quotes a paper arguing that if we keep lifting average world yields at the current rate, stop feeding maize to cars (ethanol), restrain our diets slightly and reduce waste, then an area the size of India, or of the United States east of the Mississippi, could be released globally from agriculture over the next 50 years or so. That would make a huge difference to the natural environment.

In the face of such a prize, it is worth asking the question why so many are absolutely committed to preventing any advances in agricultural technology. This is very much a one-eyed view not dissimilar from those who thought encouraging low carbon dioxide producing diesel cars would reduce the threat of global warming without side effects. The world is really too complicated for single interest groups: surely they could think a little more laterally. I realise that they must keep their subscriptions coming in but they must also think of the possible disservice they may be doing to the wider environment.

BiodiversityWe are constantly told that organic farming is better for biodiversity than conventional farming. However, the UK data I have seen suggest that organic arable crops have the same impact on biodiversity as responsible conventional farming but, of course, conventional arable crops produce around 50% more output per unit area. The difference between the systems in the UK, in terms of biodiversity, is down to the value of the clover/grass fertility building crops in organic systems. These can be used to graze sheep and cattle. However, cattle are five times less energy efficient in producing meat than chickens. Hence, the land devoted to fertility building in organic systems may be far more biodiversity friendly if a minority of it was farmed conventionally and the produce fed to chickens (or pigs), with the majority of the area being specifically devoted to increasing biodiversity. I realise that I may be guilty of being somewhat single-minded on this issue because grass/clover leys may have positive impacts on the soil that are not provided by other crops.

I suspect that the green blob hate the word ‘efficiency’ but that word is the key to a better future for humans as well as the natural environment. New technological approaches must be tested and adopted, if found safe, economic and practical. It is really the only way to achieve a greener world.

Leave a comment / View comments

Page:  1 2 3 4 5 6 7 8 9 10 11 >  Last ›